Descriptive Set Theory HW 2

Thomas Dean

Problem 1. Let (X, d) be a metric with $d \leq 1$. For sequence $\left(K_{n}\right)_{n \in \mathbb{N}} \subseteq$ $\mathcal{K}(X)-\{\varnothing\}$ and nonempty $K \in \mathcal{K}(X)$, show the following:

1. If $\delta\left(K, K_{n}\right) \rightarrow 0$, then $K \subseteq \mathrm{Tlim}_{n} K_{n}$;
2. If $\delta\left(K_{n}, K\right) \rightarrow 0$, then $K \supseteq \overline{\mathrm{~T}^{\lim _{n}}} K_{n}$;

In particular, $d_{H}\left(K_{n}, K\right) \rightarrow 0 \Rightarrow K=\mathrm{T} \lim _{n} K_{n}$. Show that the converse may fail.

Solution.

1. Assume that $\delta\left(K, K_{n}\right) \rightarrow 0$, and fix $a \in K$. To show $a \in \mathrm{~T} \lim _{n} K_{n}$, it's enough to find a sequence $\left(x_{n}\right) \in \prod K_{n}$ that converges to a. Towards that end, observe that $d\left(a, K_{n}\right) \leq \delta\left(K, K_{n}\right) \rightarrow 0$. So, we may construct $\left(N_{i}\right) \in \omega^{\omega}$ by choosing $N_{i+1}>N_{i}$ to satisfy $d\left(a, K_{n}\right)<2^{-i-1}$ for $n \geq$ N_{i+1}. Now, define $\left(x_{n}\right) \in \prod K_{n}$ as follows: if $n<N_{0}$, pick $x_{n} \in K_{n}$ to be arbitrary. Otherwise, if $N_{i} \leq n<N_{i+1}$, pick $x_{n} \in K_{n}$ to witness that $d\left(a, K_{n}\right)<2^{-i}$. By construction, $d\left(x_{n}, a\right)$ is monotonically decreasing to 0 as $n \rightarrow \infty$. So $\left(x_{n}\right) \rightarrow a$ as desired.
2. Assume that $\delta\left(K_{n}, K\right) \rightarrow 0$ and fix $a \in \overline{\mathrm{~T} \lim _{n}} K_{n}$. We may fix a sequence $\left(x_{n}\right) \in \prod K_{n}$ such that $\left(x_{n_{i}}\right) \rightarrow a$ for some subsequence. Our goal is to find a sequence $\left(a_{k}\right) \in K^{\omega}$ such that $\left(a_{k}\right) \rightarrow a$. Since K is closed, we'd win. To do this, we construct sequences $\left(N_{k}\right) \in \omega^{\omega}$ and $\left(a_{k}\right) \in K^{\omega}$ as follows: given a_{k} and N_{k}, let $m>N_{k}$ be such that $\delta\left(K_{l}, K\right)<2^{-k-1}$ if $l \geq m$. Let $i_{k+1}>0$ be least such that $n_{i_{k+1}} \geq m$. Then, choose $a_{k+1} \in K$ to witness $d\left(x_{n_{i_{k+1}}}, a_{k+1}\right)<2^{-k-1}$. We can do this because $d\left(x_{n_{i_{k+1}}}, K\right) \leq \delta\left(K_{n_{i_{k+1}}}, K\right)<2^{-k-1}$. Then, complete the construction by setting $N_{k+1}=n_{i_{k+1}}+1$.
To see that this works, notice that the sequence $\left(x_{n_{i_{k}}}\right) \rightarrow a$ as $\left(x_{n_{i}}\right) \rightarrow a$. By construction, the a_{k} 's get arbitrarily close to the $x_{n_{i_{k}}}$'s. It follows that $\left(a_{k}\right) \rightarrow a$ as well.

To see that the converse fails, we observe Example 3.12(b) in Anush's notes. If $X=\mathbb{R}$ and $K_{n}=[0,1] \cup[n, n+1]$, then $\mathrm{T} \lim _{n} K_{n}=[0,1]$ but the sequence doesn't converge in the Hausdorff metric.

Problem 2. Let (X, d) be a metric space with $d \leq 1$. Then $x \mapsto\{x\}$ is an isometric embedding of X into $\mathcal{K}(X)$.

Solution. The map is obviously injective. To see this is an isometry, notice that $\delta(\{x\},\{y\})=d(x,\{y\})=d(x, y)$, and so $d(x, y)=d_{H}(\{x\},\{y\})$.

Problem 3. Let (X, d) be a metric space with $d \leq 1$ and assume $K_{n} \rightarrow K$. Then any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ with $x_{n} \in K_{n}$ has a subsequence converging to a point in K.

Solution. We construct a sequence (y_{i}) of elements of K as follows: for each $k>0$, find $N_{k}>N_{k-1}$ such that for each $m \geq N_{k}, d_{H}\left(K_{m}, K\right)<2^{-k}$. This implies that $\delta\left(K_{m}, K\right)<2^{-k}$, and so in particular, we have that $d\left(x_{N_{k}}, K\right)<$ 2^{-k}. So, fix $y_{k} \in K$ such that $d\left(x_{N_{k}}, y_{k}\right)<2^{-k}$. Since K is compact, there's a convergent subsequence $\left(y_{k_{i}}\right) \rightarrow y$. We claim that $\left(x_{N_{k_{i}}}\right)_{i} \rightarrow y$. Given $k>0$, find $i>0$ such that $k_{i}>k$. Indeed, observe that

$$
d\left(x_{N_{k_{i}}}, y\right) \leq d\left(x_{N_{k_{i}}}, y_{k_{i}}\right)+d\left(y_{k_{i}}, y\right) .
$$

As $i \rightarrow \infty$, we have not only that $d\left(y_{k_{i}}, y\right) \rightarrow 0$ but also $d\left(x_{N_{k_{i}}}, y_{k_{i}}\right) \rightarrow 0$ by construction. The result follows.

Problem 4. Let X be metrizable.

1. The relation $x \in K$ is closed in $X \times \mathcal{K}(X)$.
2. The relation $K \subseteq L$ is closed in $\mathcal{K}(X)^{2}$.
3. The relation $K \cap L \neq \varnothing$ is closed in $\mathcal{K}(X)^{2}$.

Solution.

Fix a compatible metric $d \leq 1$ on X.

1. Assume that $x_{n} \rightarrow x$ and $K_{n} \rightarrow K$, where $x_{n} \in K_{n}$ for each n. By the previous problem, there's a subsequence of x_{n} converging to a point in K. But, then this subsequence must converge to x, implying $x \in K$.
2. Assume that $K_{n} \rightarrow K$ and $L_{n} \rightarrow L$ where $K_{n} \subseteq L_{n}$ for each n. So, it follows that $\overline{\mathrm{T} \lim _{n}} K_{n} \subseteq \overline{\mathrm{~T} \lim _{n}} L_{n}$. By one of the previous HW problems, we get that $K=\overline{\mathrm{T} \lim _{n}} K_{n}$ and $L=\overline{\mathrm{T} \lim _{n}} L_{n}$. But then $K \subseteq L$ and we win.
3. We show that $K \cap L=\varnothing$ is an open relation. To see this, first observe that metric spaces are normal. Given disjoint K and L, we find split K and L by disjoint open sets U and V. Then, for any $F \in\langle U ;\rangle_{\mathcal{K}}$ and for any $G \in\langle V ;\rangle_{\mathcal{K}}$, we have that $F \cap G=\varnothing$.

Problem 5. Let X be a topological space.

1. If X is nonempty perfect, then so is $\mathcal{K}(X)-\{\varnothing\}$.
2. If X is compact metrizable, then $C(X)$ is perfect, where $C(X)=C(X, \mathbb{R})$.

Solution.

1. Fix a nonempty compact $K \subseteq X$, and assume instead that $\{K\}$ were open. So, it follows that

$$
\{K\}=\left\{F: F \subseteq U_{1}, F \cap U_{2} \neq \varnothing, \ldots, F \cap U_{k} \neq \varnothing\right\}
$$

for some open U_{1}, \ldots, U_{k} with $U_{1} \supseteq U_{2}, \ldots, U_{k}$. For the sake of sanity, denote the RHS by \mathcal{U}. If there is a x_{1} such that $x_{1} \in U_{1}-K$, then it follows that $K \cup\left\{x_{1}\right\}$ and K are both in \mathcal{U}, contradicting that $\mathcal{U}=\{K\}$. So we may assume that $K=U_{1}$. Since X is perfect, we may also assume that $k \geq 2$.
Now, define a subset $I \subseteq\{2, \ldots, k\}$ to be good if $\bigcap_{i \in I} U_{i} \neq \varnothing$. Let \mathcal{G} be the set of all good subsets that are maximal wrt the subset ordering. For each $I \in \mathcal{G}$, choose $x_{I} \in \bigcap_{i \in I} U_{i}$. First, observe that $\left\{x_{I}\right\}_{I \in \mathcal{G}} \in \mathcal{U}$, as for each $a \in\{2, \ldots, k\}$, we can find an $I \in \mathcal{G}$ containing a. We win after showing that $\left\{x_{I}\right\}_{I \in \mathcal{G}} \subsetneq K$. To see this, fix any $I \in \mathcal{G}$. Since $\bigcap_{i \in I} U_{i} \neq \varnothing$ and X is perfect, there's a $y \in \bigcap_{i \in I} U_{i}$ such that $x_{I} \neq y$. Now, if $y=x_{J}$ for some $J \in \mathcal{G}$, then $y \in \bigcap_{i \in I \cup J} U_{i}$. Since I and J are both maximal wrt the subset ordering, it follows that $I \cup J \subseteq I, J$, implying that $I=J$. This implies that $y \neq x_{J}$ for any $J \in \mathcal{G}$, yielding that $K-\left\{x_{I}\right\}_{I \in \mathcal{G}}$ is nonempty. The result follows.
2. To see that $C(X)$ is perfect, fix $\varepsilon>0$ and $f \in C(X)$. Define $g(x)=$ $f(x)+\frac{\varepsilon}{2}$ for all $x \in X$. Then, $g \in B(f, \varepsilon)$, and so $|B(f, \varepsilon)| \geq 2$. It follows that $C(X)$ is perfect.

Problem 6. Show that any nonempty perfect compact Hausdorff space X has cardinality at least continuum by constructing an injection from the Cantor space into X.

Solution. We first begin with a claim:
Claim 1. For each nonempty open $U \subseteq X$, there's a nonempty open V such that $\bar{V} \subseteq U$.

Proof. Fix $x \in U$. Since X is a compact Hausdorff space, X is regular. So, we may find an open nhbd V of x and an open $W \supseteq U^{c}$ such that $V \cap W=\varnothing$. Since W^{c} is closed, it follows that $\bar{V}=\bigcap\{F$ closed $: F \supseteq V\} \subseteq W^{c} \subseteq U$, as desired.

Now, we construct a Cantor scheme $\left(U_{s}\right)_{s \in 2<\omega}$ of nonempty open sets in the following way:

1. Set $U_{\varnothing}=X$.
2. Given a nonempty U_{s}, we may fix distinct $x, y \in U_{s}$, because X is perfect. Since X is Hausdorff, we may choose disjoint open nhbds $V_{0}, V_{1} \subseteq U_{s}$ of x and y respectively. Applying the above claim twice, we may therefore choose appropriate disjoint open nhbds such that $\overline{U_{s \sim 0}} \subseteq V_{0} \subseteq U_{s}$ and $\overline{U_{s \sim 1}} \subseteq V_{1} \subseteq U_{s}$. This completes the construction.
(Remark: I think just dependent choice was used here, as our construction is done in countably many steps, and we made our choice of open sets depending on the open set U_{s} we were given.)

Since X is compact, it follows that $\bigcap_{n} U_{x \mid n}=\bigcap_{n} \overline{U_{x \mid n}} \neq \varnothing$ for $x \in 2^{\omega}$. Further, we have by construction that the $\bigcap_{n} U_{x \mid n}$ are disjoint for different elements of Cantor Space. This induces an injection from 2^{ω} into X as desired.
(Remark: Since X wasn't a complete metric space, I don't think we know that $\bigcap_{n} U_{x \mid n}$ is a singleton. In which case, it seems we would have to choose an element in $\bigcap_{n} U_{x \mid n}$ for each $x \in 2^{\omega}$, which involves more than just the dependent choice used above.)

Problem 7. Let X be a nonempty perfect Polish space and let Q be a countable dense subset of X. Show that Q is F_{σ} but not G_{δ}. Conclude that \mathbb{Q} is not Polish in the relative topology \mathbb{R}.

Solution. Q is F_{σ} because Q is countable, $\{x\}$ is closed, and $Q=\bigcup_{x \in Q}\{x\}$. We claim that Q is a perfect subspace. Indeed, given your favorite open $U \subseteq X$, we may find distinct $x, y \in U$, because X is perfect. Since X is Hausdorff, we may find disjoint open nhbds $U_{0}, U_{1} \subseteq U$ of x, y respectively. Since Q is dense, it follows that $U_{0} \cap Q$ and $U_{1} \cap Q$ are nonempty. Since these are disjoint, it follows that $U \cap Q$ contains at least 2 elements, implying that Q is a perfect subspace.

To see why this is enough, observe that if Q were also a G_{δ} subset of X, then Q with the relative topology would be a nonempty perfect Polish space. Hence, Q has cardinality continuum, contradicting that Q is countable. The result follows for \mathbb{Q} because it's a countable dense subset of \mathbb{R}.

Another argument would be that Q would be a comeager set, as it would be a dense G_{δ}. But, Q is meager as it's the countable union of singletons. This would imply that X is meager, which contradicts the Baire Category Theorem.

Problem 8. Show that the perfect kernel of a Polish space X is the largest perfect subset of X, i.e. it contains all other perfect subsets.

Solution. Recall, X may be uniquely written to have the form $X=P \cup C$, where the perfect kernel P is the set of all condensation points of X, and C is countable.

Now, assume that Q is a perfect subset of X. First, note that Q is in fact Polish, as it's closed by definition, and X is a Polish space by hypothesis. Our goal is to show that $Q \subseteq P$, so fix $x \in Q$ and an open $\operatorname{nhbd} U$ of x. We must show that U is uncountable. Since Q is perfect, it follows that $U \cap Q$ is a perfect subspace of Q, as open subsets of $U \cap Q$ are also open in Q. This implies $U \cap Q$ is a nonempty perfect Polish space, as Q is Polish and $U \cap Q \subseteq Q$ is an open subset of a Polish space. Well, then we win, as $U \cap Q$ will be uncountable, implying that $x \in P$, as desired.

