
Descriptive Set Theory HW 2

Thomas Dean

Problem 1. Let (X, d) be a metric with d ≤ 1. For sequence (Kn)n∈N ⊆
K(X)− {∅} and nonempty K ∈ K(X), show the following:

1. If δ(K,Kn)→ 0, then K ⊆ T limnKn;

2. If δ(Kn, K)→ 0, then K ⊇ T limnKn;

In particular, dH(Kn, K)→ 0⇒ K = T limnKn. Show that the converse may
fail.

Solution.

1. Assume that δ(K,Kn) → 0, and fix a ∈ K. To show a ∈ T limnKn, it’s
enough to find a sequence (xn) ∈

∏
Kn that converges to a. Towards

that end, observe that d(a,Kn) ≤ δ(K,Kn)→ 0. So, we may construct
(Ni) ∈ ωω by choosing Ni+1 > Ni to satisfy d(a,Kn) < 2−i−1 for n ≥
Ni+1. Now, define (xn) ∈

∏
Kn as follows: if n < N0, pick xn ∈ Kn to

be arbitrary. Otherwise, if Ni ≤ n < Ni+1, pick xn ∈ Kn to witness that
d(a,Kn) < 2−i. By construction, d(xn, a) is monotonically decreasing to
0 as n→∞. So (xn)→ a as desired.

2. Assume that δ(Kn, K)→ 0 and fix a ∈ T limnKn. We may fix a sequence
(xn) ∈

∏
Kn such that (xni

) → a for some subsequence. Our goal is to
find a sequence (ak) ∈ Kω such that (ak) → a. Since K is closed, we’d
win. To do this, we construct sequences (Nk) ∈ ωω and (ak) ∈ Kω as
follows: given ak and Nk, let m > Nk be such that δ(Kl, K) < 2−k−1

if l ≥ m. Let ik+1 > 0 be least such that nik+1
≥ m. Then, choose

ak+1 ∈ K to witness d(xnik+1
, ak+1) < 2−k−1. We can do this because

d(xnik+1
, K) ≤ δ(Knik+1

, K) < 2−k−1. Then, complete the construction
by setting Nk+1 = nik+1

+ 1.

To see that this works, notice that the sequence (xnik
)→ a as (xni

)→ a.
By construction, the ak’s get arbitrarily close to the xnik

’s. It follows that
(ak)→ a as well.
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To see that the converse fails, we observe Example 3.12(b) in Anush’s notes.
If X = R and Kn = [0, 1]∪ [n, n+ 1], then T limnKn = [0, 1] but the sequence
doesn’t converge in the Hausdorff metric. ?

Problem 2. Let (X, d) be a metric space with d ≤ 1. Then x 7→ {x} is an
isometric embedding of X into K(X).

Solution. The map is obviously injective. To see this is an isometry, notice
that δ({x}, {y}) = d(x, {y}) = d(x, y), and so d(x, y) = dH({x}, {y}). ?

Problem 3. Let (X, d) be a metric space with d ≤ 1 and assume Kn → K.
Then any sequence (xn)n∈N with xn ∈ Kn has a subsequence converging to a
point in K.

Solution. We construct a sequence (yi) of elements of K as follows: for each
k > 0, find Nk > Nk−1 such that for each m ≥ Nk, dH(Km, K) < 2−k. This
implies that δ(Km, K) < 2−k, and so in particular, we have that d(xNk

, K) <
2−k. So, fix yk ∈ K such that d(xNk

, yk) < 2−k. Since K is compact, there’s a
convergent subsequence (yki) → y. We claim that (xNki

)i → y. Given k > 0,
find i > 0 such that ki > k. Indeed, observe that

d(xNki
, y) ≤ d(xNki

, yki) + d(yki , y).

As i→∞, we have not only that d(yki , y)→ 0 but also d(xNki
, yki)→ 0 by

construction. The result follows. ?

Problem 4. Let X be metrizable.

1. The relation x ∈ K is closed in X ×K(X).

2. The relation K ⊆ L is closed in K(X)2.

3. The relation K ∩ L 6= ∅ is closed in K(X)2.

Solution.
Fix a compatible metric d ≤ 1 on X.

1. Assume that xn → x and Kn → K, where xn ∈ Kn for each n. By the
previous problem, there’s a subsequence of xn converging to a point in
K. But, then this subsequence must converge to x, implying x ∈ K.

2. Assume that Kn → K and Ln → L where Kn ⊆ Ln for each n. So, it
follows that T limnKn ⊆ T limnLn. By one of the previous HW problems,
we get that K = T limnKn and L = T limnLn. But then K ⊆ L and we
win.
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3. We show that K ∩ L = ∅ is an open relation. To see this, first observe
that metric spaces are normal. Given disjoint K and L, we find split K
and L by disjoint open sets U and V . Then, for any F ∈ 〈U ; 〉K and for
any G ∈ 〈V ; 〉K, we have that F ∩G = ∅.

?

Problem 5. Let X be a topological space.

1. If X is nonempty perfect, then so is K(X)− {∅}.

2. IfX is compact metrizable, then C(X) is perfect, where C(X) = C(X,R).

Solution.

1. Fix a nonempty compact K ⊆ X, and assume instead that {K} were
open. So, it follows that

{K} = {F : F ⊆ U1, F ∩ U2 6= ∅, . . . , F ∩ Uk 6= ∅},

for some open U1, . . . , Uk with U1 ⊇ U2, . . . , Uk. For the sake of sanity,
denote the RHS by U . If there is a x1 such that x1 ∈ U1 − K, then it
follows that K∪{x1} and K are both in U , contradicting that U = {K}.
So we may assume that K = U1. Since X is perfect, we may also assume
that k ≥ 2.

Now, define a subset I ⊆ {2, . . . , k} to be good if
⋂
i∈I Ui 6= ∅. Let G

be the set of all good subsets that are maximal wrt the subset ordering.
For each I ∈ G, choose xI ∈

⋂
i∈I Ui. First, observe that {xI}I∈G ∈ U , as

for each a ∈ {2, . . . , k}, we can find an I ∈ G containing a. We win after
showing that {xI}I∈G ( K. To see this, fix any I ∈ G. Since

⋂
i∈I Ui 6= ∅

and X is perfect, there’s a y ∈
⋂
i∈I Ui such that xI 6= y. Now, if y = xJ

for some J ∈ G, then y ∈
⋂
i∈I∪J Ui. Since I and J are both maximal wrt

the subset ordering, it follows that I ∪ J ⊆ I, J , implying that I = J .
This implies that y 6= xJ for any J ∈ G, yielding that K − {xI}I∈G is
nonempty. The result follows.

2. To see that C(X) is perfect, fix ε > 0 and f ∈ C(X). Define g(x) =
f(x) + ε

2
for all x ∈ X. Then, g ∈ B(f, ε), and so |B(f, ε)| ≥ 2. It

follows that C(X) is perfect.

?
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Problem 6. Show that any nonempty perfect compact Hausdorff space X has
cardinality at least continuum by constructing an injection from the Cantor
space into X.

Solution. We first begin with a claim:

Claim 1. For each nonempty open U ⊆ X, there’s a nonempty open V such
that V ⊆ U .

Proof. Fix x ∈ U . Since X is a compact Hausdorff space, X is regular. So, we
may find an open nhbd V of x and an open W ⊇ U c such that V ∩W = ∅.
Since W c is closed, it follows that V =

⋂
{F closed : F ⊇ V } ⊆ W c ⊆ U , as

desired.

Now, we construct a Cantor scheme (Us)s∈2<ω of nonempty open sets in the
following way:

1. Set U∅ = X.

2. Given a nonempty Us, we may fix distinct x, y ∈ Us, because X is perfect.
Since X is Hausdorff, we may choose disjoint open nhbds V0, V1 ⊆ Us of
x and y respectively. Applying the above claim twice, we may therefore
choose appropriate disjoint open nhbds such that Us_0 ⊆ V0 ⊆ Us and
Us_1 ⊆ V1 ⊆ Us. This completes the construction.

(Remark: I think just dependent choice was used here, as our construc-
tion is done in countably many steps, and we made our choice of open
sets depending on the open set Us we were given.)

Since X is compact, it follows that
⋂
n Ux|n =

⋂
n Ux|n 6= ∅ for x ∈ 2ω.

Further, we have by construction that the
⋂
n Ux|n are disjoint for different

elements of Cantor Space. This induces an injection from 2ω into X as desired.
(Remark: Since X wasn’t a complete metric space, I don’t think we know

that
⋂
n Ux|n is a singleton. In which case, it seems we would have to choose

an element in
⋂
n Ux|n for each x ∈ 2ω, which involves more than just the

dependent choice used above.) ?

Problem 7. Let X be a nonempty perfect Polish space and let Q be a count-
able dense subset of X. Show that Q is Fσ but not Gδ. Conclude that Q is
not Polish in the relative topology R.
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Solution. Q is Fσ because Q is countable, {x} is closed, and Q =
⋃
x∈Q{x}.

We claim that Q is a perfect subspace. Indeed, given your favorite open
U ⊆ X, we may find distinct x, y ∈ U , because X is perfect. Since X is
Hausdorff, we may find disjoint open nhbds U0, U1 ⊆ U of x, y respectively.
Since Q is dense, it follows that U0 ∩Q and U1 ∩Q are nonempty. Since these
are disjoint, it follows that U ∩Q contains at least 2 elements, implying that
Q is a perfect subspace.

To see why this is enough, observe that if Q were also a Gδ subset of X,
then Q with the relative topology would be a nonempty perfect Polish space.
Hence, Q has cardinality continuum, contradicting that Q is countable. The
result follows for Q because it’s a countable dense subset of R.

Another argument would be that Q would be a comeager set, as it would be
a dense Gδ. But, Q is meager as it’s the countable union of singletons. This
would imply that X is meager, which contradicts the Baire Category Theorem.

?

Problem 8. Show that the perfect kernel of a Polish space X is the largest
perfect subset of X, i.e. it contains all other perfect subsets.

Solution. Recall, X may be uniquely written to have the form X = P ∪ C,
where the perfect kernel P is the set of all condensation points of X, and C is
countable.

Now, assume that Q is a perfect subset of X. First, note that Q is in fact
Polish, as it’s closed by definition, and X is a Polish space by hypothesis. Our
goal is to show that Q ⊆ P , so fix x ∈ Q and an open nhbd U of x. We must
show that U is uncountable. Since Q is perfect, it follows that U∩Q is a perfect
subspace of Q, as open subsets of U ∩Q are also open in Q. This implies U ∩Q
is a nonempty perfect Polish space, as Q is Polish and U ∩Q ⊆ Q is an open
subset of a Polish space. Well, then we win, as U ∩ Q will be uncountable,
implying that x ∈ P , as desired. ?
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