Descriptive Set Theory HW 2

Thomas Dean

Problem 1. Let (X,d) be a metric with d < 1. For sequence (K, )nen C
K(X) — {2} and nonempty K € K(X), show the following:

1. If (K, K,,) — 0, then K C Tlim,, K,;
2. 1f §(Kp, K) — 0, then K D TTimy,Kn;

In particular, dy(K,, K) — 0 = K = Tlim,, K,,. Show that the converse may
fail.

Solution.

1. Assume that §(K, K,,) — 0, and fix a € K. To show a € Tlim, K, it’s
enough to find a sequence (z,) € [][ K, that converges to a. Towards
that end, observe that d(a, K,) < §(K, K,,) — 0. So, we may construct
(N;) € w* by choosing N;;; > N; to satisfy d(a, K,) < 27! for n >
Niy1. Now, define (x,) € [[ K, as follows: if n < Ny, pick =, € K, to
be arbitrary. Otherwise, if N; <n < N1, pick x,, € K, to witness that
d(a, K,) < 27%. By construction, d(x,,a) is monotonically decreasing to
0 as n — oo. So (z,) — a as desired.

2. Assume that 0(K,, K) — 0 and fix a € T lim,, K,,. We may fix a sequence
() € ][ K, such that (z,,) — a for some subsequence. Our goal is to
find a sequence (a;) € K* such that (a;) — a. Since K is closed, we’'d
win. To do this, we construct sequences (Ng) € w* and (a;) € K“ as
follows: given aj and Ny, let m > N, be such that §(K;, K) < 27%!
if | > m. Let iy > 0 be least such that n; _ , > m. Then, choose
ary1 € K to witness d(xmkﬂ,akﬂ) < 27k=1 We can do this because
d(wp,,,  K) < 0(Ky, . K) <2751 Then, complete the construction
by setting Ny1 = ny,,, + 1.

To see that this works, notice that the sequence (z,, ) — a as (z,,) — a.

By construction, the ay’s get arbitrarily close to the z;, ’s. It follows that
(ar) — a as well.



To see that the converse fails, we observe Example 3.12(b) in Anush’s notes.
If X =R and K,, = [0,1]U[n,n+ 1], then Tlim, K,, = [0, 1] but the sequence
doesn’t converge in the Hausdorff metric. *

Problem 2. Let (X, d) be a metric space with d < 1. Then z — {x} is an
isometric embedding of X into IC(X).

Solution. The map is obviously injective. To see this is an isometry, notice
that 0({z}, {y}) = d(z, {y}) = d(z,y), and so d(z,y) = du({z} {y}). *

Problem 3. Let (X, d) be a metric space with d < 1 and assume K,, — K.
Then any sequence (z,)neny With z, € K, has a subsequence converging to a
point in K.

Solution. We construct a sequence (y;) of elements of K as follows: for each
k > 0, find N, > N,_; such that for each m > Ny, dy(K,,, K) < 27%. This
implies that 6(K,,, K) < 27% and so in particular, we have that d(zy,, K) <
27%. So, fix y, € K such that d(zy,,yx) < 27%. Since K is compact, there’s a
convergent subsequence (yx,) — y. We claim that (z Nki)i — y. Given k > 0,
find 7 > 0 such that k; > k. Indeed, observe that

d<xNki ’ y) S d(xNkz ’ ykl) + d(yk:“ y)

As i — 00, we have not only that d(yy,,y) — 0 but also d(zn, ,yr,) — 0 by
construction. The result follows. *

Problem 4. Let X be metrizable.
1. The relation z € K is closed in X x K(X).

2. The relation K C L is closed in K(X)?.
3. The relation K N L # & is closed in K(X)?.

Solution.
Fix a compatible metric d < 1 on X.

1. Assume that x,, — x and K,, — K, where z,, € K, for each n. By the
previous problem, there’s a subsequence of x,, converging to a point in
K. But, then this subsequence must converge to x, implying x € K.

2. Assume that K,, - K and L, — L where K, C L, for each n. So, it
follows that T lim,, K,, C T lim,, L,,. By one of the previous HW problems,
we get that K = Tlim, K,, and L = T'lim,,L,,. But then K C L and we
win.




3. We show that K N L = @ is an open relation. To see this, first observe
that metric spaces are normal. Given disjoint K and L, we find split K
and L by disjoint open sets U and V. Then, for any F' € (U;)x and for
any G € (V; )k, we have that FNG = @.

Problem 5. Let X be a topological space.
1. If X is nonempty perfect, then so is K(X) — {2}.

2. If X is compact metrizable, then C'(X) is perfect, where C'(X) = C'(X,R).

Solution.

1. Fix a nonempty compact K C X, and assume instead that {K} were
open. So, it follows that

(KY={F:FCU,FNUs#@,...,FNU, # @},

for some open Uy, ..., U, with U; D Us,...,U,. For the sake of sanity,
denote the RHS by U. If there is a x; such that z; € U; — K, then it
follows that K U{x;} and K are both in U, contradicting that Y = {K}.
So we may assume that K = U;. Since X is perfect, we may also assume
that k£ > 2.

Now, define a subset I C {2,...,k} to be good if (,.; U; # @. Let G
be the set of all good subsets that are maximal wrt the subset ordering.
For each I € G, choose z; € (),.; U;. First, observe that {z;};eg € U, as
for each a € {2,...,k}, we can find an I € G containing a. We win after
showing that {z;};eg C K. To see this, fix any I € G. Since (,.,; U; # @
and X is perfect, there’s a y € (,; U; such that z; # y. Now, if y = x;
for some J € G, then y € ﬂigu] U;. Since I and J are both maximal wrt
the subset ordering, it follows that I U J C I, J, implying that I = J.
This implies that y # x; for any J € G, yielding that K — {z;}/cg is
nonempty. The result follows.

2. To see that C'(X) is perfect, fix ¢ > 0 and f € C(X). Define g(z) =
f(z) + 5 for all z € X. Then, g € B(f,¢), and so |B(f,e)| > 2. It
follows that C'(X) is perfect.



Problem 6. Show that any nonempty perfect compact Hausdorff space X has
cardinality at least continuum by constructing an injection from the Cantor
space into X.

Solution. We first begin with a claim:

Claim 1. For each nonempty open U C X, there’s a nonempty open V' such
that V C U.

Proof. Fix x € U. Since X is a compact Hausdorff space, X is regular. So, we
may find an open nhbd V' of z and an open W O U¢ such that VNW = &.
Since W€ is closed, it follows that V = (\{F closed : F DV} C W¢ C U, as
desired. O

Now, we construct a Cantor scheme (Uy)sea<e of nonempty open sets in the
following way:

1. Set Ug = X.

2. Given a nonempty Uy, we may fix distinct x,y € U, because X is perfect.
Since X is Hausdorff, we may choose disjoint open nhbds Vy, V7 C U, of
x and y respectively. Applying the above claim twice, we may therefore
choose appropriate disjoint open nhbds such that U,~g C Vi C U, and
Us~1 C V4 C U,. This completes the construction.

(Remark: I think just dependent choice was used here, as our construc-
tion is done in countably many steps, and we made our choice of open
sets depending on the open set U we were given.)

Since X is compact, it follows that (), Uy = (), Usn # @ for z € 2%
Further, we have by construction that the (1), U, are disjoint for different
elements of Cantor Space. This induces an injection from 2“ into X as desired.

(Remark: Since X wasn’t a complete metric space, I don’t think we know
that (), Uyn is a singleton. In which case, it seems we would have to choose
an element in ("), Uy, for each € 2*, which involves more than just the
dependent choice used above.) *

Problem 7. Let X be a nonempty perfect Polish space and let @) be a count-
able dense subset of X. Show that @) is F, but not Gs. Conclude that Q is
not Polish in the relative topology R.



Solution. @ is F, because @ is countable, {x} is closed, and Q = UIEQ{m}.
We claim that @) is a perfect subspace. Indeed, given your favorite open
U C X, we may find distinct x,y € U, because X is perfect. Since X is
Hausdorff, we may find disjoint open nhbds Uy, U; C U of x,y respectively.
Since ( is dense, it follows that Uy N @ and U; N Q are nonempty. Since these
are disjoint, it follows that U N ) contains at least 2 elements, implying that
@ is a perfect subspace.

To see why this is enough, observe that if () were also a G5 subset of X,
then ) with the relative topology would be a nonempty perfect Polish space.
Hence, @ has cardinality continuum, contradicting that () is countable. The
result follows for Q because it’s a countable dense subset of R.

Another argument would be that () would be a comeager set, as it would be
a dense G5. But, () is meager as it’s the countable union of singletons. This
would imply that X is meager, which contradicts the Baire Category Theorem.

*

Problem 8. Show that the perfect kernel of a Polish space X is the largest
perfect subset of X, i.e. it contains all other perfect subsets.

Solution. Recall, X may be uniquely written to have the form X = PUC,
where the perfect kernel P is the set of all condensation points of X, and C' is
countable.

Now, assume that () is a perfect subset of X. First, note that () is in fact
Polish, as it’s closed by definition, and X is a Polish space by hypothesis. Our
goal is to show that @) C P, so fix € ) and an open nhbd U of x. We must
show that U is uncountable. Since () is perfect, it follows that UNQ) is a perfect
subspace of (), as open subsets of UNQ are also open in (). This implies UNQ
is a nonempty perfect Polish space, as @) is Polish and U N @Q C @ is an open
subset of a Polish space. Well, then we win, as U N () will be uncountable,
implying that x € P, as desired. *



